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Introduction page 2

* Immense potential of ALS

* Two major methods of forest attributes
estimation, depending on the unit to be
estimated
— ITD — Individual Tree detection

* tree level

— ABA — Area Base Approach

e area of a certain fixed size

* usage of point cloud metrics

* Higher precision than inventory based on
visual assesment



Materals and methods - LIiDAR data

* LiDAR data were collected in September
2014

* Scanner Leica ALS70-CM
 Average pulse density 7,8 pulse/m?

* Filtering and classification was performed in
TerraSolid TerraScan

 Point cloud metrics calculated in FUSION
software



Materals and methods - Field plot data

* Spruce dominated stands

* |0 circular plots with a radius of 12,62 m
were established so far

* Centres of plots were measured using
GNSS receiver Topcon Hiper Pro with
applied RTK corrections

e Dbh was measured for all trees with Dbh >
/ cm



Materals and methods - Field plot data

* Several heights were measured for each
tree species oresponding approximately to
mean stem

e Stem count

* Volume and basal area were estimated for
each plot using volume tables
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* Subsetting the LiDAR data that correspond
to each field plot

* LiDAR data were normalized to the ground
surface during the subsetting process =»
returns are expressed in terms of height
above the ground

* Non-canopy returns were excluded from
calculation — 2m height threshold



Materals and methods - Point cloud metrics
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* Calculating a set of point cloud metrics
variables for each plot was performed

* Output was formatted as a CSV file

* Each record in the output CSV table had a
set of variables that describe the vertical
distribution of the LiDAR points within the
plot

* Computed point cloud metrics were used
as predictor variables in the linear
regression modelling



Implementation page 9

* Linear regression used as a modeling
technique

* OLS regression were widely used for

forest inventory variables estimations and
reliable results

* OLS regression is considered as the

approach of choice for practical forest
Inventories
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* General principles of model building were
met according to McGaughey (2013).
— As few parameters as possible
— Simple explanations
— Rely in few assumtions instead on many

— Less than three independent variables
* Height
* Canopy cover

* Descriptive category



Implementation page |1

* Solution was performed through developing
an object-oriented script using Python

* Interactive computational environment
Ipython notebook
* Opensource libraries and modules

— Pandas — data manipulation and handling
— Statsmodels — statistical analyses

— Matplotlib — plotting

P pl:lthOﬂ I P [y]: i[nf:)gll":accl':?\fr; Computing
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* Several regression models for forest
inventory variables were developed and
regression diagnostics was performed

* The following formulas may be used for
further modelling of forest inventory
variables on the whole inventory area by
using ArcGlIS software



Results — Model for volume (V)

y =—40,6011+1,73923, —1,60533, +1,95803,

B, ... All returns above mean /Total first returns *100 R?=0,94
B, ... Percentage first returns above mean RMSE = 6,83
p,...Elev P20 bias = 25,82

Partial Regression Plot
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Results — Model for basal area (G)

y =-4,6202 - 2,00415, +1,37063, + 0,78494,

R? =0,93
RMSE = 0,40
bias =19,92

B, ...Elev mean
B, ...Elev P80
p,...Elev P20

Partial Regression Plot
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Conclusion - drawbacks and pitfalls page 15

* Over-fitting the model

* Multicollinearity among independent
variables

* Extrapolation of modelled relationship

* Field work
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Thank you for attention.



